

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 2593-2596 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040525932596 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2593

Google Chrome Extension Development:

Security, Analogy and Technologies Used

Jainisha Chauhan1, Avinash Gupta2, Alka Singh3, Preeti

Singh4, Mradul Dixit5

1,5
Student, Babu Banarasi Das Engineering College, Lucknow, Uttar Pradesh

2
Professor and Head, Babu Banarasi Das Engineering College, Lucknow, Uttar Pradesh

3,4
Assistant Professor, Babu Banarasi Das Engineering College, Lucknow, Uttar Pradesh

--

Submitted: 20-05-2022 Revised: 28-05-2022 Accepted: 30-05-2022

ABSTRACT: Google Chrome extensions are apps

that can be installed in Chrome to enhance its

functionality. This can include adding new

capabilities to Chrome or changing the program's

existing behaviour to make it more user-friendly.

Chrome extensions are usually built using

technologies such as HTML, CSS and JavaScript.

Because extensions have specific privileges within

the browser, they are a tempting target for hackers.

In designing its own extension architecture, Google

Chrome integrates security concepts thus

overcoming the limitations of legacy extensions.

KEYWORDS: Google Chrome Extension,

Architecture, Security, HTML, JavaScript

I. INTRODUCTION
A web browser extension enhances

browsing experience by adding functionality to the

browser usually in the form of additional toolbars,

context menus or user interface customization.

Executable plugins to interpret certain MIME

formats (e.g., PDF readers, ActiveX, Flash

players), browser helper objects, and scriptable

extensions created largely in JavaScript, HTML,

and CSS are all examples of extensions.

Extensions provide a wide range of

capabilities, including presenting specific data

based on the user's preferences, customising the

generated Web page, accessing and even changing

security and privacy sensitive data, developing and

debugging Web apps, and much more. Figure 1

shows an extension displaying a scientific

calculator upon clicking a particular icon. Some

extensions grow so popular that they are eventually

included as standard features in the main browser.

Third-party developers create browser extensions,

which are widely available and improve the

browsing experience for end-users by allowing

them to personalise the available features by

installing multiple extensions. Extensions

contribute to the development of a developer

community for the concerned browser platform,

and hence to the popularity of the Google Chrome

browser.

Most modern Web browsers export

privileged APIs that allow extension developers to

access sensitive resources such as file systems,

passwords, cookies, networks, and more. Because

of this unlimited access to critical resources,

JavaScript(JS)-based extensions can run with the

privileges of hosting principals, such as a Web

browser. As a result, browser extensions are

fundamentally different from Web applications,

which are restricted by concepts such as the same-

origin policy and have limited authority. Therefore,

these extensions offer a greater risk to end users

than Web 16 programmes, because the benign-but-

bugged extensions can be exploited by remote

attackers to seize control of the entire Web

browser.

Figure 1. A real world google chrome extension of

a scientific calculator

 Browser makers are required to maintain

authorised sites for hosting extensions because of

the high security risk. The Chrome Web Store is

where users can find and install extensions for

Google Chrome while the official site for Firefox

extensions is the addon gallery. Developers make

their extensions accessible for download in the

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 2593-2596 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040525932596 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2594

addon gallery and web shop, just like they do in

other app stores for iOS and Android. In addition

to these authorised places, extensions can also be

installed manually by a user or an external

program. These extensions, unlike those on official

sites, are not subjected to a thorough security

evaluation. Due to potential security risks, browser

providers normally prohibit end-users from

obtaining and installing extensions from untrusted

sources.

II. SECURITY MODEL OF CHROME

EXTENSIONS
Anticipating browser security issues, the Google

Chrome extension platform was created to

safeguard users from bugs in otherwise harmless

addons [14]. It includes three security mechanisms:

A. Privilege separation : Every Chrome

extension comprises two types of components:

content scripts (zero or more) and core

extension (zero or one). Content scripts read

websites and make changes as needed. The

main extension includes browser UI

components, long-running background jobs, an

options page, and other functionality that are

not directly related to websites. Separate

processes run content scripts and core

extensions, and they communicate by sending

structured clones across an authorised channel.

Each website gets its own isolated instance of

a certain content script. Chrome's extension

API is accessible to core extensions, but not to

content scripts.

Content scripts are the most vulnerable to

attack since they interact directly with webpages,

making them low-privilege. Higher-privilege is the

protected core extension. As a result, a content

script compromise that does not extend beyond the

message-passing channel to the higher-privilege

core extension does not constitute a substantial

threat to the user.

B. Isolated worlds : The separated worlds

approach is designed to keep web attackers

away from content scripts. A content script can

read or edit the DOM of a website, but the

content script and the website both have their

own JavaScript heaps and DOM objects. As a

result, web pages and content scripts never

exchange pointers. This should make

tampering with content scripts on websites

more difficult.

C. Permissions : Extensions can't access sections

of the browser API that affect users' privacy or

security by default. A developer must declare

the required permissions in a file packed with

the extension in order to have access to these

APIs. An extension, for example, must request

permission to read or change the user's

bookmarks. Extensions' use of cross-origin

XML Http Requests is similarly limited by

permissions; extensions must declare the

domains with which they intend to interact.

Permissions are only available to the core

extension. Browser APIs and cross-

originXHRs are not available to content

scripts. A content script can only access the

website it is executing on and deliver messages

to its core extension.

Permissions are used to protect against

vulnerabilities in core extensions. An attacker

cannot request new rights for a hacked extension

since it is limited to the permissions that its

developer requested. As a result, the severity of an

extension's vulnerability is confined to the API

calls and domains that the permissions permit.

Google Chrome was the first browser to provide

features like privilege separation, isolated worlds,

and extension permissions. These safeguards were

designed to make Google Chrome extensions safer

than Mozilla Firefox extensions or Internet

Explorer browser helper objects. [14].

III. ARCHITECTURAL FEATURES OF

LEGACY EXTENSIONS AND

CHROME EXTENSIONS
 The architectural elements of legacy

framework and google chrome extension clearly

illustrate why legacy framework has security issues

and how the architectural design of chrome

extensions overcome them.

Legacy Extension Architecture : Open

technologies like HTML, CSS, JavaScript, and

XUL are commonly used to create legacy

extensions. To access system resources and

perform valuable functions, these extensions

frequently leverage privileged browser APIs like

XPCOM. In terms of API interaction, there are two

types of JavaScript code in extensions: privileged

JavaScript code (chrome script) that accesses

XPCOM and unprivileged JavaScript code (content

script) that interacts with untrusted Web content on

Web pages. However, Firefox's original extension

design contains several flaws that make it

vulnerable. Some of these are briefly discussed

below:

● Unified JavaScript heap : Both unprivileged

content scripts and privileged chrome scripts

execute in the same heap in Mozilla's legacy

extensions, increasing the risk of shared

references. The interface has been attacked [8,

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 2593-2596 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040525932596 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2595

12] by attackers due to the limitations of the

isolation mechanism that seeks to segregate

untrusted references of the content JavaScript

from the chrome JavaScript. In such

circumstances, the attacker could modify

shared object references and influence the

execution of the privileged code within the

extension if the user navigates to a malicious

Web page. Privilege escalation scenarios like

this have already been utilised to exploit

insecure extensions [13].

● Chrome DOM : The chrome DOM stores the

visual representation of the browser's user

interface, which includes toolbars, menus, the

status bar, and icons. Chrome scripts, like

JavaScript code on a Web page that can access

the page DOM, can access the chrome DOM

and programmatically manipulate the

browser's complete UI.

● Privileged objects : The global window object

and its properties are available to all chrome

scripts by default. The Components object is a

window-specific property that grants access to

the browser's private XPCOM APIs. An

attacker who obtains a reference to the

Components object has complete control over

the browser and can access any system

resources. As a result, in a shared heap

environment, the availability of Components to

all scripts by default dramatically enhances the

probability of vulnerability exploitation.

JavaScript is used to write parts of the

browser and addons. With a monolithic heap and

no isolation primitives in the language, legacy

extension security is primarily dependent on the

discretion and competence of extension developers.

Many previous studies [7, 8, 9, 10] have

demonstrated the downsides of legacy extensions

and highlighted design flaws in legacy architecture.

Google Chrome Extension Architecture:

Figure 2. Architecture of Google Chrome

Extension

Google Chrome integrates security concepts when

creating its own extension architecture [8],

addressing the security vulnerabilities of legacy

Firefox extension architecture. By dividing the

extension into three separate processes: content

scripts, extension core, and native binaries and it

seeks to protect users from vulnerabilities in

benign-but-bugged extensions using three security

principles: POLA, privilege separation, and strong

isolation.The Chrome extension architecture is

depicted in Figure 2 at a high level. It comes with

three main security features which have already

been discussed in section II (Security Model of

Chrome Extensions).

IV. TECHNOLOGIES FOR

DEVELOPING GOOGLE CHROME

EXTENSIONS
HTML/CSS parsers, layout and rendering engines,

JavaScript interpreters, network protocol stacks,

and storage layers are all important components of

Web browsers. The following is a rundown of

some of the most important Web technologies that

are at the heart of browser extensions and Web

apps.

1. HTML/CSS : All Web documents are

primarily written in HTML [6] and CSS [5]. While

HTML, a declarative markup language, describes

the structure of the Web document, CSS dictates its

presentation and style. Elements in the HTML

document form a tree structure that is internally

represented and can be manipulated by a

programming API known as Document Object

Model(DOM) [4]. A node in the DOM tree

represents each HTML tag on a Web page.Each

DOM node additionally contains any application-

defined event handlers for GUI activity, as well as

the accompanying CSS data.

2. JavaScript : JavaScript [3] is a dynamic,

lightweight, interpreted language that has become

the de facto standard for Web and, in particular,

browser client side scripting. It's prototype-based

and object-oriented, and it lets you handle

functions as first-class objects. It allows Web pages

to change their HTML DOM structure, CSS style

attributes, and displayed content dynamically.

REFERENCES

[1] Nicholas Carlini, Adrienne Porter Felt, and

David Wagner. An evaluation of the google

chrome extension security architecture. In

Proceedings of the USENIX Security ’12.

USENIX Association.

[2] Guanhua Yan Lei Liu, Xinwen Zhang and

Songqing Chen. Chrome extensions: Threat

analysis and countermeasures. In

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 2593-2596 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040525932596 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 2596

Proceedings of the 19th Network and

Distributed System Security Symposium.

[3] David Flanagan. JavaScript: The Definitive

Guide. O’Reilly Media Inc.

[4] Document object model.

www.w3.org/DOM.

[5] World Wide Web Consortium. CSS.

http://www.w3.org/Style/CSS/

Overview.en.html.

[6] World Wide Web Consortium. HTML.

http://www.w3.org/html/.

[7] Sruthi Bandhakavi, Samuel T. King, P.

Madhusudan, and Marianne Winslett.

Vetting browser extensions for security

vulnerabilities with VEX. CACM, 54(9),

September 2011.

[8] Adam Barth, Adrienne Porter Felt, Prateek

Saxena, and Aaron Boodman. Protecting

browsers from extension vulnerabilities. In

Proceedings of 13th Network and

Distributed System Security Symposium,

NDSS ’10. The Internet Society, 2010.

[9] Mohan Dhawan and Vinod Ganapathy.

Analysing information flow in javascript

based browser extensions. In ACSAC, 2009.

96 Vladan Djeric and Ashvin Goel. Securing

script-based extensibility in web browsers.

In Proceedings of USENIX Security 10.

[10] Google Chrome APIs.

http://developer.chrome.com/extensions/api_

index.html.

[11] Google. Web APIs.

http://developer.chrome.com/extensions/api_

other.html.

[12] Addon SDK. Content proxy.

https://addons.mozilla.org/ en-

US/developers/docs/sdk/latest/dev-

guide/guides/content-scripts/accessing-the-

dom.html.

[13] Greasespot: The weblog about

Greasemonkey. http://www.greasespot.net.

[14] A. Barth, A. P. Felt, P. Saxena, and A.

Boodman. Protecting Browsers from

Extension Vulnerabilities. In Network and

Distributed System Security Symposium

(NDSS), 2010.

http://www.w3.org/DOM
http://www.w3.org/html/
http://www.greasespot.net/

